skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Colaric, Zane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Giri, Basant (Ed.)
    Early detection of SARS-CoV-2 infection is key to managing the current global pandemic, as evidence shows the virus is most contagious on or before symptom onset. Here, we introduce a low-cost, high-throughput method for diagnosing and studying SARS-CoV-2 infection. Dubbed Pathogen-Oriented Low-Cost Assembly & Re-Sequencing (POLAR), this method amplifies the entirety of the SARS-CoV-2 genome. This contrasts with typical RT-PCR-based diagnostic tests, which amplify only a few loci. To achieve this goal, we combine a SARS-CoV-2 enrichment method developed by the ARTIC Network (https://artic.network/) with short-read DNA sequencing andde novogenome assembly. Using this method, we can reliably (>95% accuracy) detect SARS-CoV-2 at a concentration of 84 genome equivalents per milliliter (GE/mL). The vast majority of diagnostic methods meeting our analytical criteria that are currently authorized for use by the United States Food and Drug Administration with the Coronavirus Disease 2019 (COVID-19) Emergency Use Authorization require higher concentrations of the virus to achieve this degree of sensitivity and specificity. In addition, we can reliably assemble the SARS-CoV-2 genome in the sample, often with no gaps and perfect accuracy given sufficient viral load. The genotypic data in these genome assemblies enable the more effective analysis of disease spread than is possible with an ordinary binary diagnostic. These data can also help identify vaccine and drug targets. Finally, we show that the diagnoses obtained using POLAR of positive and negative clinical nasal mid-turbinate swab samples 100% match those obtained in a clinical diagnostic lab using the Center for Disease Control’s 2019-Novel Coronavirus test. Using POLAR, a single person can manually process 192 samples over an 8-hour experiment at the cost of ~$36 per patient (as of December 7th, 2022), enabling a 24-hour turnaround with sequencing and data analysis time. We anticipate that further testing and refinement will allow greater sensitivity using this approach. 
    more » « less
  2. Abstract Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium—an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that theEmx2locus experienced lineage-specific patterns of acceleratedcis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show thatEmx2is a critical upstream regulator of patagium development. Moreover, we identify differentcis-regulatory elements that may be responsible for driving increasedEmx2expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence thatEmx2expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation ofEmx2was altered by distinctcis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty. 
    more » « less
  3. Oleksyk, Taras (Ed.)
    Abstract The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species. 
    more » « less
  4. A high-quality Australian dingo genome gives a multithousand-year-old snapshot in the evolutionary history of dogs. 
    more » « less
  5. We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes. 
    more » « less